
Fielded Text Standard
1 Document

1.1 Information
a) Author

Paul Klink

b) Copyright

© Paul Klink 2016

c) Release Date

27 Nov 2016

d) Status

Draft

e) Document Version

0.9

f) Fielded Text Standard Version

1.1

1.2 Change Information
a) Version 0.9

◦ Version 1.1

◦ Specified how headings are stored in Meta

◦ Culture is ignored when testing for string equality (Version 1.1 change).

◦ Removed XML substitution types. XML character encoding is not in the
scope of this standard (Version 1.1 change).

◦ Clarified substitutions take priority over stuffed embedded quotes when
reading.

◦ Added Character Standard Formatting. Meta character properties can
also be represented in a numeric character reference format (Version 1.1
change).

◦ Added Null Type Sequence Redirect (Version 1.1 change)

◦ Replaced EndOfLineIsSeparator with LastLineEndedType (Version 1.1
change)

◦ Added AllowIncompleteRecords Meta Property (Version 1.1 change)

◦ Sequence Items with constant fields cannot have redirects.

◦ Sequences must include at least one item.

◦ At least one field must be specified

Page 1 of 45

◦ Changed Raw Value to Value Text.

b) Version 0.8.1

◦ Description of Culture has been significantly improved.

◦ Minor improvements to other descriptions in document.

c) Version 0.8

◦ Added EndOfLineIsSeparator

◦ Added DateTime format strings (Preliminary)

◦ Document Formatting and description improvements.

◦ Minor changes to terms.

2 Introduction

2.1 Definition
Fielded Text is a standard which provides structure and schema definition to
text files which contain tables of values. Typically, a line in these text files
represents a record (or row) and the line itself is divided into fields (or columns).
Comma Separated Variable (CSV) files and Tab Delimited files are examples of
Fielded Text Files.

2.2 Purpose
The purposes of the Fielded Text standard are:

a) To make it easier to parse files containing fielded information (ie tables of
values).

b) To assist in generating files which conform to a specified format.

c) To increase the chances of the information in a file being correctly
interpreted.

d) Improve methods of transferring and exchanging tables of data.

e) Allow files containing fielded information to be accessed with database like
techniques.

2.3 Compatibility
The Fielded Text standard aims to be compatible with nearly all existing files
containing fielded information. It supports the following capabilities to provide
compatibility with existing files:

a) Fields separated by a delimiter character,

b) Fixed Length Fields,

c) Mixed Fixed Length and Delimiter separated fields in a line,

d) Quoted Fields (Optional or Explicit),

e) New Lines in Quotes,

f) Automatic New Line detection or specified New Line character,

Page 2 of 45

g) End Of Line as record separator (instead of terminator),

h) Comments,

i) Ignoring Blank Lines,

j) Ignoring extra characters/fields in lines,

k) Handling region cultures,

l) Character Encodings,

m) Multiple Heading Lines (both delimited and fixed length),

n) Substitutions (escape sequences),

o) Embedded (Stuffed) Quote Characters,

p) Boolean, DateTime, Decimal, Float, Integer and String fields,

q) Field Heading Constraints,

r) Null fields,

s) Constant fields,

t) Specify format and styles of fields,

u) Lines can have different sequences of fields based on the value of “key”
fields.

3 Files

3.1 Files and Streams
In order to make this standard more readable, it refers to Fielded Text “files” and
Fielded Text Meta “files”. However, in most cases, “file” can be respectively
construed as any content or stream of data containing fielded information or
XML data which is Meta for fielded text. For example, it can also represent:
web pages, memory streams, other IO streams etc.

3.2 Fielded Text Meta Files
The “Meta” of a text file specifies the format of a fielded text file. It specifies
items such as:

a) Fields in the file,

b) Sequence of fields in the file,

c) The format and type of each field,

d) What character is used to delimit fields,

e) The substitutions used in the file.

The Meta is specified in an XML file. The schema for this XML file is specified
in this document.

3.3 Declared and Undeclared Fielded Text files
Fielded Text files can either be declared or not declared. Declared Fielded Text
Files begin with 2 lines which contain the following information:

Page 3 of 45

a) A special string which identifies the file as being a Fielded Text file.

b) The version of the Fielded Text Standard which this file conforms to.

c) A link to the Meta which specifies the format of this Fielded Text File

4) Custom/File specific information

Undeclared Fielded Text files do not begin with these two lines and do not
contain the information. When these files are parsed, then Meta file needs to
be explicitly specified. Existing CSV or Tab Delimited or other text files
containing fielded information are undeclared Fielded Text files.

3.4 Character Encoding
The character encoding of Fielded Text files is not specified in the Meta for the
files. For Fielded Text files, character encoding is considered a transport issue
and outside the scope of this standard. The standard contains references to
ASCII and Unicode characters however these are provided for example only.

Fielded Text Meta files are XML files and use XML conventions for specifying
their character encoding.

3.5 Culture
Different countries and regions throughout the world have different conventions
concerning how to display dates and numbers. To support these different
conventions, formatting is always done within the context of a culture. This
culture is specified by the “Culture” property in the Meta. The value of this
property is specified in accordance with RFC 4646 however it is not case
sensitive.

The culture specifies various parameters used in field formatting. These
parameters are described in Culture Parameters (5.3). The parameters always
reflect the conventions of the country or region. Generally these are not
expected to change, but if the conventions do change in a country/region, then
the language rules and parameters for the corresponding culture will also
change accordingly.

Culture should be ignored when testing if strings are equal. Strings should be
compared on a character by character basis when testing for equality and
language linguistics should not be taken into account. For example, in the
German culture, ß should not match ss.

There is one culture which is not dependent on any country or region and is
guaranteed not to change. This is the “Invariant Culture”. The parameters
associated with this culture are specified in “Invariant Culture Parameter
Values” (5.3.1). If cultural considerations are not important, then it is
recommended that the invariant culture be used. It provides the highest
reliability that the data will be correctly interpreted as its parameters are well
defined and are not subject to change.

If the Culture is not specified in the Meta or its value only contains a zero length
string, then the Invariant Culture is to be used.

Page 4 of 45

3.6 Whitespace
Whitespace Characters are printable characters which provide horizontal and
vertical separation and do not provide a visual mark. The following characters
are treated as white space:

a) Horizontal Tab (ASCII 9)

b) Line Feed (ASCII 10)

c) Vertical Tab (ASCII 11)

d) Form Feed (ASCII 12)

e) Carriage Return (ASCII 13)

f) Space (ASCII 32)

g) Whitespace categorised Unicode Characters.

Whitespace characters can have special significance in certain contexts within a
Fielded Text file. For example, a Line Feed character may mark the end of a
record. The special uses of whitespace characters will be further covered
throughout the rest of this document.

3.7 Lines
A Fielded Text file consists of 0 or more lines. How a line starts and ends, and
the types of lines in a fielded text file is described below.

3.7.1 Start and End of a Line

A line starts with either the first character in a file or the first character after the
End of Line (EoL) character(s) that flagged the end of the previous line. A line
ends with the first EoL character(s) encountered after the start of the line. The
last line in the file can either end when the EoL characters are encountered or
when the end of the file (EoF) is reached. The EoL character(s) are not
considered part of the line.

3.7.1.1 EndOfLineType and EndOfLineChar

The “EndOfLineType” Meta property determines which character(s) are the End
of Line character(s). This property can have one of three values:

1) “Auto”

Auto specifies that any of the following 3 character sequences will flag the
end of a line:

◦ <Carriage Return> (ASCII 13)

◦ <Line Feed> (ASCII 10)

◦ <Carriage Return><Line Feed> (ASCII 13 followed by ASCII 10)

2) “Char”

Char specifies that the EoL character is specified by the “EndOfLineChar”
Meta property. The “EndOfLineChar” property must contain a string with
one character only in it. This character becomes the EoL character.

3) “CrLf”

Page 5 of 45

CrLf specifies that the character sequence <Carriage Return><Line Feed>
(ASCII 13 followed by ASCII 10) flags the end of a line.

3.7.1.2 EndOfLineAutoWriteType

When generating files, the “EndOfLineAutoWriteType” Meta property specifies
which character(s) should be used to mark the end of a line if the
“EndOfLineType” is “Auto”. The “EndOfLineAutoWriteType” property can have
one of the following values:

a) “CrLf”

The EoL characters are <Carriage Return><Line Feed> (ASCII 13 followed
by ASCII 10).

b) “Cr”

The EoL character is a <Carriage Return> (ASCII 13).

c) “Lf”

The EoL character is a <Line Feed> (ASCII 10).

d) “Local”

One of the above EoL character sequences is used based on the local
environment / operating system. This value ensures that any Fielded Text
files generated on a computer can be correctly viewed with other programs
on that same computer.

3.7.1.3 LastLineEndedType

The “LastLineEndedType” Meta property specifies whether the last line in the
file is followed by the EoL character(s). This property can have one of the
following values:

a) “Never”

The EoL character(s) must not follow the last line in a file. If the EoL
character(s) are the last character(s) in a file, then the file contains one
more blank line after these character(s).

b) “Always”

The EoL character(s) must follow the last line in a file. If the EoL
character(s) are not the last character(s) in a file, then the file is not
correctly formatted (unless it is a zero length file which is not required to
end with the EoL character(s)).

c) “Optional”

The EoL character(s) are optional at the end of a file unless the last line is a
blank line. If the last line is a blank line, then the EoL character(s) must be
included otherwise they can be ignored.

3.7.1.4 EndOfLineIsSeparator

The EoL character(s) can also be used to separate lines rather than terminate
them. The “EndOfLineIsSeparator” Meta property specifies if EoL character(s)
are line separators. If this property is True, then the last line in the file must not

Page 6 of 45

be followed by the EoL character(s). This property has been deprecated in
version 1.1 of the Fielded Text standard. It has been replaced by the
LastLineEndedType property (3.7.1.3).

3.7.2 Line Types

A Fielded Text file contains 4 types of lines:

1) Heading Line

A Heading line is a line in the Heading Section of a Fielded Text file. These
lines correspond to Headings often placed at the top of files containing
fielded information.

2) Record Lines

These lines only exist in the Body Part. They contain the actual fielded
information. Typically, one line represents one record (or row) of fielded
information. However if a field contains EoL character(s) (and the
“AllowEndOfLineCharInQuotes” Meta Property is True), then it is possible
for a record to span multiple lines.

3) Comment Lines

Fielded Text files can contain comment lines. Any line which is not a
Heading Line or a Record Line or an ignored Blank Line (see below), needs
to be a comment line. This allows Fielded Text files to be easily parsed by
other types of Parsers.

A Comment line is a line which begins with the “Comment Character”.
(There are possible 2 exceptions to this, Heading Lines and New Lines
embedded in a quoted field; these are covered later in this document). The
“Comment Character” is either specified by the Meta or is specified by the
Declaration part (if it is present).

Comment lines are generally ignored in a Fielded Text file however in 2
sections (Declaration and Embedded Meta) they are not ignored.

4) Ignored Blank Lines

Blank lines are treated like any other non-comment line if the
“IgnoreBlankLines” Meta Property is False. However if this Meta Property
is True, then Blank Lines become Ignored Blank Lines and are ignored.
(Similarly to Comment Lines, there are possible 2 exceptions to this,
Heading Lines and New Lines embedded in a quoted field; these are
covered later in this document).

4 Structure

4.1 Overall
At the highest structural level, a fielded text file consists of 2 parts: Header and
Body. Both parts are optional. In fact an empty file can be a valid Fielded Text
file. The Header part always comes first and is immediately followed by the
Body part.

Page 7 of 45

4.2 Header Part
The Header itself consists of up to five sections. These are:

1) Declaration

2) Comments

3) Embedded Meta

4) Comments

5) Heading Lines

Each of these sections are optional. If they are present, it will be in the above
order.

The Declaration section, if it is present, will be the first 2 lines in the file. The
first character in the first line of the declaration becomes the “Comment
character”. This overrides the Comment Character specified in the Meta. Each
of these 2 lines in the declaration part begin with this comment character.

If the declaration specifies that the Meta should be loaded from either an
external file or an external URL, then this Meta will be downloaded immediately
after the 2 declaration lines. The new Meta takes affect for the 3rd line onwards.
If the new Meta specifies a different Comment character, then this also will take
affect from the 3rd line onwards.

The Comments and Embedded Meta sections can contain comment lines or
ignored blank lines. Both Comments sections are ignored when parsing.

The Embedded Meta section will be present if the Declaration specifies that the
Meta for this Fielded Text file is embedded within the file. This part contains the
XML which is the Meta for this Fielded Text file. The lines containing a standard
XML stream (conforming to the Fielded Text Meta Schema) however each line
begins with the comment character and optionally followed by some white
space characters. The start and end of this section is determined by the
detection of specific XML tags/elements.

If an Embedded Meta is present, then this new Meta will take affect in the line
that immediately follows the Embedded Meta section. If the new Meta specifies
a different Comment character, then this also will take affect after the
Embedded Meta section.

The number of Heading Lines contained in the header is specified by the
“HeadingLineCount” property. If there is one or more Heading Line, then the
first Heading Line will be the first line that is not a comment line or an ignored
blank line.

The remaining Heading Lines will immediately follow the first heading line. If
any of these remaining Heading Lines are blank, then they are still considered
to be heading lines – even if “IgnoreBlankLines” Meta property is True. Also, if
any of the remaining Heading Lines begin with a comment character they are
also still considered to be heading lines (and not comments). In other words,
the Heading Lines are always consecutive.

If the Meta specifies that there are no Heading Lines then the Body part starts
where the Heading Lines part would have started.

Page 8 of 45

4.3 Declaration Section

4.3.1 Signature and Comment Character

A Declaration Section is contained within a Fielded Text file if the following 2
conditions are met:

1) The file contains at least 17 characters, and

2) The 2nd to 17th characters match the Fielded Text Signature string.

The signature string is “|!Fielded Text^|” (not including the surrounding quote
characters and with a space character between “Field” and “Text”).

If the above conditions are met, then the “Comment Character” is set to the first
character in the file.

4.3.2 Declaration Parameters

The rest of the first line and all of the second line consist of Declaration
Parameters.

A Declaration Parameter is a name/value pair. The name/value pairs have a
format of: <name>=<value>. The value part of the name/value part is a string
which is always encoded with standard string quoting (see 5.1.6). The name
part can be any string provided it does not contain the “=” character and it
cannot start or end with a white space character. The name part is not case
sensitive. The name and value parts are separated by an “=”character. Any
white space characters between the “=” character and the name or the value,
are ignored.

Declaration Parameters themselves are separated by one or more white space
characters. The first declaration parameter can either immediately follow the
Signature string or be separated from the Signature string by one or more white
space characters.

4.3.3 Version Declaration Parameter

The first declaration parameter must always be the Version declaration
parameter. This parameter must always be present in a Declaration. (No other
parameters are compulsory.) The Version parameter specifies the version of
the Fielded Text standard which a Fielded Text file conforms to.

The name of this parameter is: “Version”.

The value of the Version parameter has a format of:
 <Major Version Number>.<Minor Version Number>[.[Any string not containing
white space characters]]
The “Major Version Number” and “Minor Version Number” must always be
present. The “Minor Version Number” can optionally be followed by a period and
then (optionally again), a string. The string cannot contain white space
characters.

A Fielded Text parser should use the version parameter to determine if it
supports the version of the Fielded Text standard a file conforms to.

4.3.4 Meta Reference Declaration Parameters

A Meta Reference Declaration Parameter can be included to associate a

Page 9 of 45

Fielded Text file to its Meta. There are 3 different types of Meta Reference
Declaration Parameters:

1) MetaEmbedded parameter (name: “MetaEmbedded)

If this parameter exists, then the Meta for the Fielded Text file is embedded
within the Fielded Text file. The value is ignored however it is
recommended that the value be set to True.

2) MetaFile parameter (name: “MetaFile”)

The value for the MetaFile is a path of a file which contains the Meta for the
Fielded Text file.

3) MetaUrl parameter (name: “MetaUrl”)

The value for the MetaUrl parameter is a URL where the Meta for the
Fielded Text file can be downloaded.

Only one of the above 3 parameters should be included in the declaration. If
more than one are included, then the one with the highest priority according to
above list is to be used (1 = highest). If more than one of the same type (and
highest priority) are included then the first of these in the file should be used.

4.3.5 Custom Declaration Parameters

Custom or user specific declaration parameters can be added to the
declaration. The name of custom declaration parameters should not conflict
with any existing declaration parameters defined by this standard. To avoid
conflict with declaration parameters defined in future versions of this standard,
custom parameters should have names beginning with “x-” or “X-” (not including
quotation characters).

4.4 Embedded Meta Section
The Embedded Meta section only exists in a file if the declaration section
contains the “MetaEmbedded” parameter. If this parameter is not present then
even if lines representing the Meta are present, then they should be ignored
(treated as comments). If the parameter is present, then the Embedded Meta
section must be present otherwise the file is invalid.

All lines in the Embedded Meta section are comment lines. However if you
remove the comment character that starts each line, then the lines make up the
XML that represents the Meta for the file. After the comment characters have
been removed from the lines, the resulting XML can be processed by any
standard XML reader to get access to the Meta properties and elements.

The Embedded Meta Section is considered to be present if the string
“<FieldedText” (not including quotes and case sensitive) is detected in a
comment line in the header (but not in the declaration).

If the Embedded Meta section is determined to be present, then the start of the
Embedded Meta section is determined as follows:

a) If a line prior to the line containing “<FieldedText”, contains the string “<?
xml ” (not including quotes; one space character at the end; and case
sensitive) then the Embedded Meta section starts from this prior line. The
prior line cannot be in the declaration section.

Page 10 of 45

b) If no prior line contains the string “<?xml ”, then the Embedded Meta
section starts from the line containing the “<FieldedText” string.

The end of the Embedded Meta section is detected by checking if a line
contains the string “</FieldedText>” (not including quotes and case sensitive).
The line that contains this string is the last line of the Embedded Meta section.

The XML which makes up the Meta starts from either:

a) The string “<?xml ” if it exists on the first line and is before the
“<FieldedText” string.

b) Otherwise the XML starts from the “<FieldedText” string on the firstline.

All characters on the first line before the start of the XML are ignored.

All characters after the “</FieldedText>” string on the last line are also ignored.

All lines in the Embedded Meta section must be comment lines. If any line in
this section does not begin with a comment character, then the file is invalid.

4.5 Comments Sections
Both comments sections only contain comment lines. These lines are always
ignored when parsing.

4.6 Heading Lines Section
Heading Lines contain fielded data. However the values in these lines are the
headings for the fields. Each field has an array of heading values. These
values can describe the contents and purpose of a field or they can provide
other supplementary information about the field.

The number of headings in a field is the same as the number of Heading lines.
Both counts are therefore specified by the “HeadingLineCount” Meta property.
The values in each successive heading line corresponds to equivalent indexed
values in the field's array of headings.

If one or more of the heading lines is specified, then it is also necessary to
specify which of these lines contains the “Main” heading. The
“MainHeadingLineIndex” Meta property specifies the index of the main heading
line. For example, if the first line held the main heading, then
“MainHeadingLineIndex” would be set to 0. The main heading line is used in
conjunction with Heading Constraints (see Heading Constraint, 4.10.4).

4.7 Body Part
The Body Part starts immediately after the Heading Lines section, or if there are
no Heading Lines, where the Heading Line section would have started.

This part contains 3 types of lines:

1) Record Lines

2) Comment Lines

3) Ignored Blank Lines

Comment Lines and Ignored Blank lines within the Body are ignored when
parsing.

Page 11 of 45

Record Lines contain the fielded information. Normally one line represents one
record (or row). However it is possible for a record to span multiple lines. This
will occur if the EoL character(s) are embedded in a field. In this case, EoL
characters do not designate the end of a record and are treated like other
characters. EoL characters are allowed to be embedded in a field if the
following 2 conditions are met:

1) The “AllowEndOfLineCharInQuotes” Meta property is True, and

2) The field is quoted. That is, the field is surrounded by quote characters.

If an EoL characters are embedded in a field, then the subsequent line is a
record line – even if it starts with a comment character or it is blank line.
Comment Lines and Ignored Blank Lines cannot occur within a record that
spans multiple lines.

4.8 Record
Records contain the fielded data in a fielded text file. Each record contains an
ordered set of values which correspond to the fields and sequences defined in
the Meta. Typically a record corresponds to one line in the fielded text however
it can span multiple lines as described above.

The Meta defines the Fields which a record can contain. At least one field must
be defined. The order of the fields in a record is defined by the Sequences in
the Meta. If no sequences are defined in the Meta, then an implicit sequence is
used. The implicit sequence consists of the list of all fields in the order they are
declared in the Meta.

Each value in a record must conform to the properties of its corresponding field
in the record. If there is only one sequence or the implicit sequence is used,
then the list of fields will be the same for all records. If there is more than one
sequence in the Meta, then it is possible for records to have different lists of
fields. This is further described in the Sequences (4.13) section.

Fields can either be “Fixed Length” or “Delimited”. If a field is “Fixed Length”,
then the subsequent field begins immediately after the last character in this
field. If a field is “Delimited”, then the Delimiter Character (specified by the
“DelimiterChar” Meta property) determines when the field ends. The first
Delimiter character after the start of the field, which is not embedded in the field,
flags the end of the field. The last character of the field is the one prior to the
delimiter character. The subsequent field starts immediately after the delimiter
character.

The “IgnoreExtraChars” Meta property determines if any extra characters can
occur in a line after the last field in a record. If this property is False, then the
EoL character(s) must immediately occur after the last field in a record.
However, if it is True, then all characters after the last field are ignored until the
EoL character(s).

If the last field in a line is a delimited field, then if the “IgnoreExtraChars” Meta
property is False, then the Delimiter Char must not end this field. Since it is the
last field in a line, the EoL characters will end this field. If the
“IgnoreExtraChars” Meta property is True, then the last field can be ended by
either the Delimiter Char or by the EoL character(s).

Page 12 of 45

Normally a record line in the text file must include all fields expected by the
record. However sometimes a line may have less fields than expected records.
For example, this can occur if a record ends with a repeating field or set of
fields. The number of maxium number of repeats may be known however lines
may have less than the maximum number of repeats. The
“AllowIncompleteRecords” Meta property specifies that a line does not need to
supply all the fields expected by a record. If this property is True, then it is not
an error for the line to end before all fields are given a value. The fields
included in the line must be correctly parsed and the line cannot end with an
incompletely parsed field.

The last field in the last line of a file can also be ended by the End Of File (EoF).
The “LastLineEndedType” property indicates whether the last line can be ended
by EoF or whether it needs to be ended with the EoL character(s).

4.9 Order of fields in a Record
The order of fields in a record is determined by sequences (see Sequences,
4.13). However a Meta may not specify any sequences. In this case the order
of fields in a record is determined by the “implicit sequence”. The implicit
sequence is itself determined from the resolved order of fields using:

a) The order of the Field elements in the Meta, and

b) The value of the “Index” property in a field Element.

See “Calculating resolved order of elements” (4.14) for details of how a resolved
order is determined from a list of elements.

The resolved order of fields forms the implicit sequence.

4.10 Field
A field specifies the type of data a value in a record contains. It also specifies
how that data is formatted. Each field is defined in the Meta with a “Field”
element.

4.10.1 Field Name

Each field has a name. The “Name” field Meta property specifies a field's
name. Names do not have to be unique within a Meta however it is
recommended that they be unique. Field names are also not case sensitive.
When searching for a field by name, the search should be case insensitive.
Also note that a field's name can be a blank string.

The main heading in a field can also be a field's name. If the “NameIsMain”
heading constraint is selected then:

a) When parsing a fielded text file, the field name is set to the value in the
field's main heading.

b) When generating a fielded text file, a field's name is used as the field's main
heading.

4.10.2 Field Id

Each field has an “Id” Meta property. This property holds a 32 bit signed
integer. The purpose of an Id is to allow fields to be identified via an integer

Page 13 of 45

instead of a name. This makes it easier to use fields in switch/case statements.
However the Id can be used for other purposes.

4.10.3 Headings

The Meta can contain the heading values expected for a field. Each field's
expected headings are stored in “Headings” property in the Field's Meta as
standard String CommaText. The actual headings themselves are in the
Fielded Text file however these values can be validated against the heading
values stored in the Meta. A field has as many headings as specified by the
“HeadingLineCount” Meta property, however the Meta does not need to store
that many headings. If less are stored in the Meta, then the remaining headings
are set to empty strings and if more are stored, then the excess are ignored.
Headings are stored in “Headings” field Meta property using standard
CommaText format.

4.10.4 Heading Constraint

A field's “HeadingConstraint” property specifies how the a fields headings in the
Fielded Text file should be validated when the Fielded Text file is parsed. This
property can have one of 5 values:

1) “None”: No validation.

2) “AllConstant”: The field's headings in the Fielded Text file must match the
heading values for that field stored in the Meta. The comparison is case
sensitive.

3) “MainConstant”: The field's main heading in the Fielded Text file must
match the corresponding heading value for that field stored in the Meta.
The comparison is case sensitive.

4) “NameConstant”: The field's main heading in the Fielded Text file must
match field's name. The comparison is case insensitive.

5) “NameIsMain”: If this constraint is selected, then, when a Fielded Text file is
parsed, the field's name is set to the field's main heading value. When a
file is generated, the field's main heading is set to the field's name. This
constraint allows field names to be dynamically assigned directly from the
text file.

4.10.5 Field Text, Value Text and Value

The data stored in a field for a record can be interpreted in several ways. This
document refers to this data in the following ways:

4.10.5.1 Field Text

The Field Text is the complete string for a field as it exists in the file. For
delimited fields, the string includes quote characters where fields are quoted
and any whitespace around the quote characters. It does not include the
delimiter character.

4.10.5.2 Value Text

The Value Text is the string for a field after it has been processed for quotes,
substitutions, stuffed embedded quotes and End of Value (for fixed width fields).

Page 14 of 45

It is the string value which will be cast to the data type corresponding to the
field's data type (eg. Integer, DateTime). When writing a text file, the Value Text
is the string that is obtained after converting the field's value to a string value.

4.10.5.3 Value

A field's data as a type corresponding to the field's “DataType” property.

4.10.6 Constant Fields

The “Constant” field Meta property specifies whether a field is constant. A
Constant field has its value defined in the Meta. When a Fielded Text file is
parsed, each value in the file for that field, must match the constant specified in
the Meta. If it does not match, then a parsing error occurs. When a file is
generated, the constant value specified in the Meta is always written out to the
fielded Text file.

The constant value itself is stored in the “Value” field Meta property. This
property is ignored if the “Constant” property is not True. The values
themselves are stored in this property using their respective standard format.
That is, the culture and the field's format and style properties do not affect how
data is stored in the “Value” property. See “Standard Formatting” (5.1) for a
description of standard formats for all of the field data types.

A Field can also specify the constant to be Null. If the field is constant, and the
“Null” meta field property is True then the field value must always be Null. See
“Field Data Types” (4.10.9) for the definition of when a field value is considered
to be Null. Note that the “Null” meta property is ignored if the field is not
constant. Also note that “Null” field meta priority takes priority over the “Value”
field meta property.

4.10.7 Delimited Fields

If the “FixedWidth” field Meta property is False or not present, then the field is a
Delimited field. Delimited fields can be of variable length and they are
terminated with the first non-embedded Delimiter Character after the start of the
field (or the EoL character(s) if the field is the last in the record).

A Delimited field can either be quoted or not quoted. If a field is quoted, then
the first non-whitespace character in the field must be the Quote character
which is specified by the Meta “QuoteChar” property. Also the last non-
whitespace character prior to the terminating delimiter character, must be the
Quote character. The enclosing quote characters are not part of the field’s
value text.

Any Delimiter characters between the enclosing quotes of a quoted field are not
treated as delimiters. They are simply treated as characters in the value text
(unless they they are a substitution token).

The Quote character itself can be included within a quoted field if the
“StuffedEmbeddedQuotes” Meta property is True. In this case, if there are 2
successive quote characters within a quoted field, then neither of these 2
characters is the ending quote character. Instead this pair of quotes represents
one normal quote character within the value text of the field. If the
“StuffedEmbeddedQuotes” Meta property is False or not present, then the first
quote of a successive pair would be treated as the end enclosing quote

Page 15 of 45

character for the field.

Quoted fields also allow EoL character(s) to be included in the value text for a
field. If the “AllowEndOfLineCharInQuotes” Meta property is True, then any EoL
character(s) which appear within a quoted field, do not flag the end of a record.
Instead they are treated like normal characters and are part of the value text of
the field.

If a field is not quoted, then all the characters from the first to the one prior to
the terminating delimiter character, are part of the value text of the field (after
being processed for substitutions). The “StuffedEmbeddedQuotes” and the
“AllowEndOfLineCharInQuotes” Meta properties do not change the behaviour of
any of the characters in a field that is not quoted.

The “ValueQuotedType” field Meta property determines whether a field in a
record is quoted. This property can have one of three values:

1) “Never”

Specifies that the field is never quoted.

2) “Always”

Specifies that the field will be quoted unless it has a Null value. (Fields with
a Null value are never quoted).

3) “Optional”

When parsing a text file, if the first non-whitespace character is the Quote
character, then the field is quoted. Otherwise it is not quoted.

When writing a text file a field will be quoted if the field is not Null and any of the
following conditions are met:

a) The “ValueAlwaysWriteOptionalQuote” field Meta property is True.

b) The the first non-whitespace character in the value text (the text that
represents the field's value) is the Quote Character.

c) The “ValueWritePrefixSpace” field Meta property is True and the first
character in the value text is a whitespace character.

d) The value text contains the Delimiter character.

e) The value text contains any of the EoL character(s).

When generating a fielded text field, you can use the “ValueWritePrefixSpace”
field Meta property to place an extra space in front of a delimited field. This
visually increases the separation between the fields and may make the field
easier to review. Prefixing a space can be done on a field by field basis and is
activated by setting this field property to True. If a field has a Null value, then it
will not be prefixed by a space – even if this property is True. Be careful when
using this property with “String” data type fields which are flagged as Never
quoted as the space will be considered as part of the field value when the
generated file is parsed.

4.10.8 Fixed Width

If the field's “FixedWidth” Meta property is True, then the field always consists of
the same number of characters. Unlike Delimited fields, Fixed Width fields are

Page 16 of 45

not terminated by a special character. The subsequent field immediately follows
the last character of the field. Also, Fixed Length fields are never quoted and do
not contain substitutions.

The “Width” field Meta property specifies the number of characters in the field.
It must have a value that is one or greater.

If a field's value is Null (file value – not the field's constant value), then field text
written to the file will be a string of Null characters. The Null character is
specified by the field's “ValueNullChar” Meta property. The length of this field
text will always be width of the field. Likewise, when reading the value of a
FixedWidth field, if all the characters in the field text are the Null character, then
the value is Null.

When reading or writing the value text for a Fixed Length field it is quite possible
that the value text does not exactly match the width of the field. Several field
meta properties determine how to resolve the mismatch between the value text
length and the field width.

4.10.8.1 Padding Properties (value text shorter than field width)

If the value text is shorter than the field width, then the value text will be padded
so that its length becomes equal to the field's width.

The field's “ValuePadAlignment” Meta property indicates whether the padding
will occur on the left or the right side of the value text. This property can also be
set to “Auto”, in which case the alignment will automatically be set to the default
for each field data type.

The field's “ValuePadCharType” Meta property indicates how the padding
character is to be selected. It can have one of the following 3 values:

1) “Auto”

The padding character is automatically chosen based on the data type of
the field. “Field Data Types” (4.10.9) identifies what character is used for
each data type. Note that if “Auto” is selected, then the other Padding
properties are ignored when reading files – that is, Padding properties are
only used when generating files.

2) “Specified”

The padding character is specified by the “ValuePadChar” field Meta
property.on the data type of the field. Note that if “Specified” is selected,
then the other Padding properties are ignored when reading files – that is,
Padding properties are only used when generating files.

3) “EndOfValue”

The first padding character after the value text is the character specified by
the “ValueEndOfValueChar” field Meta property. This character flags the
end of the value. By selecting “EndOfValue”, the value text will match the
original value text as the padding can be identified when reading and
discarded. Unlike as in the “Auto” and “Specified” values, if “EndOfValue” is
selected, then the other Padding properties are used for both reading and
writing.

If more than one padding character is required, then all padding characters

Page 17 of 45

after the first padding character are ignored when reading. When writing, it
is recommended that the “Auto” character be used as the subsequent
padding characters.

The above description of “EndOfValue” applies to Right aligned padding. If
the padding is left aligned, then the first character before the value will be
the character specified by the “ValueEndOfValueChar” field Meta property
and all characters prior to this will be ignored when reading.

4.10.8.2 Truncate Properties (value text longer than field width)

If the value text cannot fit into the width of the field, then information will be lost
when the file is generated. The field's “ValueTruncateType” Meta property
specifies how the truncation is to be done. It can have one of the following
values:

a) “Left”

The left side of the value text is truncated.

b) “Right”

The right side of the value text is truncated.

c) “TruncateChar”

The field text is set to a string of repeated characters. The character is
specified by the field's “ValueTruncateChar” Meta property. The length of
the string matches the width of the field.

d) “NullChar”

The field text is set to a string of repeated characters. The character is
specified by the field's “ValueNullChar” Meta property. The length of the
string matches the width of the field. If this value is selected, then the field
value will be considered as Null when it is read.

e) “Exception”

If a value text needs to be truncated, the software component or library
writing the file should raise an exception. The higher level software can
then use this exception to handle this condition.

Note that the Truncate properties are ignored when reading files – they are only
applicable when writing files.

4.10.9 Field Data Types

A field can hold different types of data values. The type of data value a field has
is specified by the field's “DataType” Meta property. Depending on the type of
data a field holds, the field will also have some extra Meta properties which
specifies the field's format and style. The format and style properties specify
how conversion between the field’s value and its value text is carried out. This
is described below in detail for each Field Data type.

Note that a field's value can also be Null – irrespective of its data type. A field's
data value is always Null if it is a delimited field which is always quoted and its
field text only contains whitespace. For Fixed Length fields, the data value will
be Null if all its characters are the Null Character. Some of the data types also

Page 18 of 45

have other conditions in which the field's value is Null. These are also
described below.

A field's “DataType” Meta property can have the following values.

a) “String”

Specifies that the field's data is a string; that is, a series of characters. The
string can be up to 2,147,483,647 characters in length.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Right Pad.

b) “Boolean”

The field's data is either the boolean True or False. The field Meta
properties “FalseText”, “TrueText” and “Styles” specify how to convert
between the Field's Value and its Value Text. This conversion is described
in detail in “Field Formatting, Boolean” (5.2.1). If the Field Text is an empty
string or only contains only whitespace, then the Value is Null.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Right Pad.

c) “Integer”

The field's data is a signed Integer. The range is that of a 64 bit signed
integer. The field Meta properties “Format” and “Styles” specify how to
convert between the Field's Value and its Value Text. This conversion is
described in detail in “Field Formatting, Integer” (5.2.2). If the Field Text is
an empty string or only contains only whitespace, then the Value is Null.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Left Pad.

d) “Float”

The field's data is a Floating point number. The range and precision is that
of a IEEE 754 Double Precision (64 bit) Floating Point number . The field
Meta properties “Format” and “Styles” specify how to convert between the
Field's Value and its Value Text. This conversion is described in detail in
“Field Formatting, Float” (5.2.3). If the Field Text is an empty string or only
contains only whitespace, then the Value is Null.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Left Pad.

e) “Decimal”

The Decimal type is similar to the Float type however it is appropriate for
financial calculations requiring large numbers of significant integral and
fractional digits and no round-off errors. Decimal numbers support a range
of 922337203685477.5808 to 922337203685477.5807 and can have up to
4 decimal places.

Similar to the “Float” data type, the field Meta properties “Format” and
“Styles” specify how to convert between the Field's Value and its Value
Text. This conversion is described in detail in “Field Formatting, Float”
(5.2.3). If the Field Text is an empty string or only contains only

Page 19 of 45

whitespace, then the Value is Null.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Left Pad.

f) “DateTime”

The field's data is a date and/or time. The date can range from 1 January
0001 to 31 December 9999. The time can be specified down to an
accuracy of 10-7 seconds (100 nanosecond). The field Meta properties
“Format” and “Styles” specify how to convert between the Field's Value and
its Value Text. This conversion is described in detail in “Field Formatting,
DateTime” (5.2.6). If the Field Text is an empty string or only contains only
whitespace, then the Value is Null.

The Auto Pad character is a space (ASCII 32) and the Auto Pad alignment
is Left Pad.

4.11 Heading Lines
Heading Lines are similar to records in that they consist of successive fields of
values. However in this case, each value is a heading for the field. They are
parsed and generated similarly to records however with the following
differences.

a) Each heading field value is a string – regardless of the data type of the
field.

b) A Field's value becomes one of the headings for that field. The index of the
Heading Line determines which heading in the field is set to the value.

c) A heading line can be blank. If a heading line is blank, all its corresponding
heading values in fields are empty strings.

d) Headings are formatted in the same way as string data type fields. The list
below shows the field Meta properties which determine the formatting of
heading fields. The equivalent property which affects the formatting of string
fields in records is shown in brackets:

◦ “FixedWidth”

◦ “Width”

◦ “HeadingQuotedType” (“ValueQuotedType”)

◦ “HeadingAlwaysWriteOptionalQuote”
(“ValueAlwaysWriteOptionalQuote”)

◦ “HeadingWritePrefixSpace” (“ValueWritePrefixSpace”)

◦ “HeadingPadAlignment” (“ValuePadAlignment”)

◦ “HeadingPadCharType” (“ValuePadCharType”)

◦ “HeadingPadChar” (“ValuePadChar”)

◦ “HeadingTruncateType” (“ValueTruncateType”)

◦ “HeadingTruncateChar” (“ValueTruncateChar”)

◦ “HeadingEndOfFieldChar” (“ValueEndOfFieldChar”)

Page 20 of 45

Refer to the field sections for a description of how these properties affect
field formatting. The above properties behave in exactly the same way for
Heading fields as they for record fields.

e) The values of Heading Fields are subject to the field's “HeadingConstraint”
property.

f) Heading lines can only have fields as specified by the root sequence or the
implicit sequence. Sequence redirections cannot occur in heading lines.

4.12 Substitutions

4.12.1 Use of Substitutions

Substitutions allow strings and characters to be represented in a Fielded Text
file with tokens. This can be useful in circumstances such as:

a) Field values contain non-printable characters.

b) Long strings are used repeatedly within a text file

c) Field values contain characters which have special purposes within a
fielded text file.

d) A fielded text file is within a context where particular strings should not be
present (for example, XML).

Substitutions are analogous to escape sequences as used in the C
programming language though not exactly the same.

4.12.2 Identifying Substitutions

Substitutions exist within Field Text as pairs of characters. The first character of
the pair is the Substitution Character. This character is analogous to the
Escape Character in 'C' escape sequences. The Meta property
“SubstitutionChar” specifies which character is the substitution character for the
file.

The second character is the token character. If a substitution is defined in the
Meta which specifies this token, then this substitution will be applied at this point
in the file. If no substitution has this token, then the token character itself is the
substitution.

Note that substitutions are only enabled if the “SubstitutionsEnabled” Meta
property is True. If this property is not True, then the Meta “SubstitutionChar”
property is ignore and all substitutions defined in the Meta are also ignored.
Also, substitutions do not occur in Fixed Width fields.

4.12.3 Substitution Elements

The substitutions are specified by “Substitution” elements in the Meta. There is
one element for each substitution. A Substitution element has the following
Meta properties:

a) “Token”

Specifies the character which is the token for this substitution.

b) “Type”

Page 21 of 45

There are several different types of substitutions. This property can have
one of the following values:

◦ “String”

The substitution pair (Substitution character and token) are replaced by a
string. The string is specified by the Substitution's “Value” Meta property

◦ “AutoEndOfLine”

The substitution pair are replaced by the EoL character(s) specified by
the “ EndOfLineAutoWriteType” main Meta property. Note that if the “
EndOfLineAutoWriteType” has a value of “Local”, then these
substitutions will place EoL character(s) into the text that are easily
readable on the local computer.

c) “Value”

Specifies the string or character to be substituted if the substitution type is
“String”.

4.12.4 Processing Substitutions

Substitutions are processed when converting headings or value text to field text
(writing) and when converting field text to headings or value text (reading).

When reading, if a string gets substituted into a field, then none of the
characters in a substituted string (or the single character) have any special
significance – they are simply treated as characters in the value text. For
example, if a character in a substituted string is the same as the character
specified by the Meta “DelimiterChar” property, then that character is not
treated as a delimiter. This also applies to characters which follow the
substitution character but are not included as a token in any substitution
elements.

Also when reading, substitutions are processed before stuffed embedded
quotes. So if the quote character is also a token, and a substitution character is
followed by 2 quote characters and StuffedEmbeddedQuotes is enabled, then
the substitution would first be processed and the 2 quote characters would not
be considered as one stuffed embedded quote character. If the replacement
string ends with a quote character then this also would not be combined with
the subsequent quote character and considered as a single embedded quote
character.

When writing, the heading or value text is scanned for strings or characters
which can be substituted. Where-ever possible, strings or characters in the
heading or value text which match one of the substitution elements, should be
replaced by that substitution. If at any point in the processing, more than one
substitution can be applied, then the one declared earlier in the Meta will have
priority and be used.

4.13 Sequences
Sequences define the order in which fields occur in records.

With Sequences, you can specify Fielded Text files where records can contain
different fields based on the value of a key field. For example, an accounting

Page 22 of 45

Fielded Text file may specify both clients and transactions. If the value in the
second field holds the value “C”, then the line (record) specifies a client; if the
second field contains the value “T”, then the line specifies a transaction. All
Client lines contain the same fields and all Transaction lines contain the same
fields however fields in Client lines differ from the fields in Transaction lines.

To support these types of files, all different sequence of fields in a Fielded Text
file need to be identified. In the above example, there would be 3 sequences
defined:

1) First 2 fields of all records (Root),

2) Fields after the first 2 fields in Client records (Client),

3) Fields after the first 2 fields in Transaction records (Transaction).

One sequence is defined as the Root sequence. All records begin with the root
sequence. In the above example, the sequence consisting of the first 2 fields is
the Root sequence.

In addition to defining an ordered list of fields, a sequence can also associate
one or more “Sequence Redirects” with a field. A Sequence Redirect contains a
condition and the name of a sequence. If a field is associated with Redirects,
then for each record in a file, the field's value is compared against the all the
field's Redirect conditions. If the value matches a Redirect's condition, then the
fields in the Sequence specified by the Redirect are invoked. That is for that
record, the next and successive fields will be those fields listed in the sequence
identified by the Redirect. Alternatively, the fields can be invoked after the
current sequence comes to an end.

In the above example, the 2nd field of the root sequence will have 2 Redirects.
One Redirect will have the condition of match “C” and specify the Client
sequence. The other Redirect will have the condition of match “T” and specify
the Transaction sequence.

Any sequence can invoke a new sequence with a redirect; not just the root
sequence. Accordingly, a record can be subjected to multiple sequence
redirects. It is also valid for one sequence to be invoked multiple times in the
same record.

The Meta does not have to explicitly define any sequences. If no sequences
are defined, it will be implicitly inferred from the order of the “Field” elements in
the Meta. Typically, if all records in a Fielded Text file contain the same fields in
the same order, then the sequence is not explicitly defined and the implicit
sequence is used.

4.13.1 Sequence Elements

Sequences are specified by “Sequence” elements in the Meta.

Each element is identified by the Sequence's “Name” Meta property. All
Sequences need to have a unique name. However sequence names are not
case sensitive. So if 2 sequences have names that only differ by the casing of
letters, then these names are not unique.

Only one sequence can have the sequence Meta property “Root” with a value of
“True”. This defines that sequence as the Root sequence. Whenever a record

Page 23 of 45

(or heading line) is parsed, the root sequence is used to determine the order of
the fields from the 1st field onwards. Note that for records (but not heading
lines) other sequences can be invoked during the parsing of a records fields, if
any of the field values match a redirect condition.

If none of the sequences have a “Root” property set to True, then the root
sequence will be the first declared in the Meta which does not have a “Root”
Meta property.

Each sequence has an ordered list of sequence items. Each Sequence Item
specifies a field and optionally specifies one or more Sequence Redirects
associated with that field.

A Sequence's items (SequenceItems) can be defined in 2 ways:

1) Sequence Item elements

The “SequenceItem” element is used to define the items. The implicit order
of these items is the order they appear in the Meta. However a Sequence
Item can explicitly specify its position in the order with its “Index” property.

2) FieldIndices property

Sequence Elements can also be specified by the FieldIndices property.
This property contains an array of Integers in Standard Integer CommaText
format (5.1.8). Each integer is the index of the a field (in the resolved fields
order).

The array specifies a list of Sequence Items, each of which has the field
specified by the Integer value. These Sequence Items cannot have an
“Index” property so their position is always specified by the implicit order.
They also do not have any redirects.

The resolved order of the items is determined by the implicit order of those
specified by elements, followed by those specified by the “FieldIndices”
property. Items specified by an element, however can have their position
explicitly set. This is further explained in “Calculating resolved order of
elements” (4.14).

If the Meta does not contain any sequences, then the order of fields is
determined from the “implicit sequence”. The implicit sequence is determined
from the resolved order of fields as described in “Calculating resolved order of
elements” (4.14).

4.13.2 Sequence Item elements

A Sequence must have one or more Sequence Item elements.

Each Sequence Item must specify an existing Field. If a Sequence Item was
specified with a “SequenceItem” element, then the element must contain the
“FieldIndex” property. This property specifies the index of a field using the
fields' resolved order.

If an Item was specified with its Sequence's “FieldIndices” property, then its
(resolved) field index will be its Integer value in the “FieldIndices” integer array.

Sequence Item's specified by an element can also have an “Index” property.
The value of this property explicitly specifies the Items position in its
Sequence's resolved order of Sequence Items.

Page 24 of 45

Sequence Items can contain zero or more Sequence Redirects. A Sequence
Redirect is specified by a “Redirect” element within the Sequence Item element.

4.13.3 Sequence Redirect elements

A Sequence Redirect is used to change the order of fields in a record. A
Redirect specifies a condition, a sequence and an invokation delay. If the field's
value matches the condition, then the fields in the sequence specified in the
redirect will be used in the record. The Redirect can specify that the new fields
should be invoked immediately after the current field or they can be invoked
after the current sequence is finished.

A record can have more than one redirect invoke a new sequence.

The Redirect Meta property “SequenceName” specifies the name of the
sequence a redirect will invoke.

The Redirect Meta property “InvokationDelay” specifies whether the fields in the
new sequence are to be invoked immediately after the current field or after the
current sequence is finished. If a Redirect specifies that new fields should be
invoked after the current sequence ends, then any Redirects in subsequent
Sequence Items in the current sequence are to be ignored.

A sequence item can have more than one redirect. When checking for a match,
the first redirect whose condition matches is applied. The redirects have a
resolved order. This order is determined by the order in which they appear in
the Meta (the implicit order) and whether a redirect has an “Index” Meta
property. The “Index” Meta property explicitly specifies the order position for
that sequence redirect. “Calculating resolved order of elements” (4.14) details
how the resolved order is determined from implicit element order and the
“Index” property.

The “Type” Redirect Meta property specifies what type of condition a Meta
contains. It can have one of the following values:

a) “ExactString”

The field value needs to match the string stored in the Redirect's “Value”
Meta property. The comparison is case sensitive.

b) “CaseInsensitiveString”

The field value needs to match the string stored in the Redirect's “Value”
Meta property. The comparison is not case sensitive.

c) “Boolean”

The field value needs to match the Boolean value stored in the Redirect's
“Value” Meta property. The Boolean is stored in the Meta using Standard
Boolean formatting.

d) “ExactInteger”

The field value needs to exactly match the Integer value stored in the
Redirect's “Value” Meta property. The Integer is stored in the Meta using
Standard Integer formatting.

e) “ExactFloat”

The field value needs to exactly match the Float value stored in the

Page 25 of 45

Redirect's “Value” Meta property. The Float is stored in the Meta using
Standard Float formatting.

f) “ExactDateTime”

The field value needs to exactly match the DateTime value stored in the
Redirect's “Value” Meta property. The DateTime is stored in the Meta using
Standard DateTime formatting.

g) “Date”

The date portion of the field value needs to exactly match the date portion
of the DateTime value stored in the Redirect's “Value” Meta property. The
Time portions are ignored in the comparison. The DateTime is stored in the
Meta using Standard DateTime formatting.

h) “ExactDecimal”

The field value needs to exactly match the Decimal value stored in the
Redirect's “Value” Meta property. The Decimal is stored in the Meta using
Standard Float formatting.

i) “Null”

The field value is null.

If a Sequence Item contains a Redirect condition whose data type differs from
the Sequence Item's field's data type, then the comparison should be
undertaken with the following steps:

1) Try to convert the field's value to the same data type as expected by the
Redirect condition. If this conversion fails, then the field value is considered
as not matching the condition.

2) Carry out the comparison with the converted field value.

It is recommended that Sequence Items use Redirects which expect the same
data type as provided by the Sequence Item's field. Different implementations
of Fielded Text may carry out Data Type conversions in different manners –
leading to different interpretations of the data in a fielded text file.

Sequence Redirects can not be included in a Sequence Item with a constant
field value.

4.14 Calculating resolved order of elements
The order of the elements in the Meta determines the implicit order, however
“Index” property can override the position in the implicit order.

5 Value Formats and Styles
Various types of values need to be converted to and from text representations in
both Fielded Text files and Fielded Text Meta files. These conversions are
specified by formatting. There are 2 types of formatting:

1) Standard Formatting (5.1)

A simplified formatting used in Fielded Text Meta Files and Declaration
section in Fielded Text files.

Page 26 of 45

2) Field Formatting (5.2)

A more comprehensive formatting used by fields in Fielded Text files.

5.1 Standard Formatting
Standard Formatting allows you to express values as strings using a simplified
fixed format which is not affected by styles or culture.

In Standard Formatting only the following characters are considered as
Whitespace characters:

1) Horizontal Tab (ASCII 9)

2) Line Feed (ASCII 10)

3) Vertical Tab (ASCII 11)

4) Form Feed (ASCII 12)

5) Carriage Return (ASCII 13)

6) Space (ASCII 32)

7) Any whitespace categorised Unicode character

The following Data Types and Data Type arrays have standard formats:

5.1.1 Boolean

Standard formatted Booleans can be one of the following 2 string values:

1) “True”

2) “False”

These values are not case sensitive.

5.1.2 Integer

Standard formatted Integers have the following format:

[ws][sign]digits[ws]

Items in square brackets ([and]) are optional; and the values of the other items
are as follows.

a) ws

A series of white space characters.

b) sign

A culture invariant positive sign or negative sign character.

c) digits

A sequence of digits ranging from 0 to 9.

5.1.3 Float

Both Float and Decimal numbers can be stored in the Standard Float Format.

Standard formatted Float numbers have the following format:

[ws][sign]integral-digits[.[fractional-digits]][e[sign]exponential-digits][ws]

Page 27 of 45

Optional items are framed in square brackets ([and]). Items containing the
term "digits" consist of a series of numeric characters ranging from 0 to 9. The
values of the items are:

a) ws

A series of white space characters.

b) sign

A culture invariant negative sign or positive sign symbol.

c) integral-digits

A series of digits specifying the integral part of the number. Integral-digits
can be absent if there are fractional-digits.

d) '.'

A culture invariant decimal point symbol (a period).

e) fractional-digits

A series of digits specifying the fractional part of the number.

f) 'e'

An uppercase or lowercase character 'e', indicating exponential (scientific)
notation.

g) exponential-digits

A series of digits specifying an exponent.

5.1.4 DateTime

Standard formatted DateTimes have one of the following formats:

a) yyyyMMdd

Specifies a DateTime where the time portion is either 0 or irrelevant. It
consists of an 8 character string containing a 4 digit year, a 2 digit month
and a 2 digit day.

b) hhmmss

Specifies a DateTime where the date portion is irrelevant. It consists of 6
character string containing a 2 digit hour, a 2 digit minute and a 2 digit
seconds.

c) yyyyMMddhhmmss

Specifies a DateTime with both date and time portions. The first 8
characters specify the date as described above. The next 6 characters
specify the time as described above.

d) yyyyMMddhhmmss.<digit>[0 to 6 <digits>]

Specifies a DateTime with fractional seconds. The first 8 characters specify
the date as described above. The next 6 characters specify the time as
described above. This is then followed by a period character (ASCII 46)
and at least one digit (ranging from 0 to9). The digits after the period
specify the fractional seconds. Up to 7 digits can be used to specify the
fractional seconds – allowing time to be specified to an accuracy of 100

Page 28 of 45

nanoseconds.

e) 'hhmmss.<digit>[0 to 6 <digits>]

Specifies a Time with fractional seconds. The date portion of the DateTime
is irrelevant. The first 6 characters specify the time as described above.
This is then followed by a period character (ASCII 46) and at least one digit
(ranging from 0 to9). The digits after the period specify the fractional
seconds. Up to 7 digits can be used to specify the fractional seconds –
allowing time to be specified to an accuracy of 100 nanoseconds.

5.1.5 Characters

Characters can have one of the following formats.

1) The character itself

If the character is a valid XML character, then it can be used in standard
formatting.

2) Numeric character reference format

A string containing the ordinal value of the Unicode UTF32 representation
of the character. The string can be formatted in one of the following 2 wys:

◦ #<digits>

The # chararacter followed by one or more digits representing the ordinal
value.

◦ #x<hex digits>

The string “#x” followed by one or more hex digits representing the
ordinal value as a hexadecimal string.

This format can be used to represent any character.

Where possible, it is recommended to use the character itself. However if the
character is not a valid XML character or it cannot be graphically presented with
typical fonts, then it is best to use the numeric character reference format.

5.1.6 String Quoting

Standard String Quoting is implemented as follows:

a) The Quote character is always " (ASCII 34).

b) All existing Quote Characters in a string are replaced with 2 Quote
Characters ("").

c) A Quote Character is placed at the start and the end of the string.

5.1.7 String CommaText

Standard String CommaText allows you to express an array of strings as a
single string. It is implemented as follows:

a) A string in the array must be quoted with standard string quoting if it meets
any of the following conditions.

◦ The string contains one or more Comma Characters (ASCII 44)

◦ The first non-white space character in the string is the Quote Character

Page 29 of 45

(ASCII 34).

b) Even if a string in the array does not meet any of the above conditions, it
still can be optionally quoted with standard string quoting.

c) The resultant strings (after quoting if required) are then combined into one
long string with separators. This is done by placing them in the string in
their order according the array. The separator between each array string is
one Comma character (ASCII 44).

d) If an array string is quoted, then optional white space characters can be
placed between the enclosing quote characters and the Comma Character
(or the start or end of the resultant string if the array string is respectively
the first or last in the array). Otherwise, no other characters can appear in
the string.

5.1.8 Integer CommaText

Standard Integer CommaText allows you to express an array of Integers as a
single string. It is implemented as follows:

a) Each Integer in the array is converted to a string using Standard Integer
formatting.

b) The resultant string array is then converted to a single string using
Standard String CommaText formatting (5.1.7).

5.2 Field Formatting
Field formatting used used to convert between field values and the text
representation. It uses styles and the culture specified by the Meta. Field
formatting is far more comprehensive than Standard Formatting (5.1) and aims
to support most text representations of values.

5.2.1 Boolean

5.2.1.1 Format

Two Meta properties determine whether a text string represents a True or False
value:

1) The “FalseText” Meta property specifies the string which represents a value
of False.

2) The “TrueText” Meta property specifies the string which represents a value
of True.

When a text string is parsed, it is firstly compared against the Meta TrueText
string. If these 2 strings match, then the value is True. If they do not match,
then the text string is compared with the Meta FalseText string. If these match
then the Value is False, otherwise there is a parsing error.

5.2.1.2 Styles

Styles provide some additional capabilities when parsing a text string. These
styles only apply to parsing and not when generating strings.

a) IgnoreCase

Page 30 of 45

Case is ignored when text strings are compared to the Meta FalseText and
TrueText strings.

b) MatchFirstCharOnly

Only the first characters of the text string and the Meta FalseText and
TrueText strings are compared.

c) IgnoreTrailingChars

If the text string is longer than the Meta FalseText, then the comparison
ignores all characters in the text string which are beyond the length of the
Meta FalseText string. For example, if this style is selected then the text
string “Failure” would match the Meta FalseText “Fail”. The same applies
when comparing the text string with the Meta TrueText.

d) FalseIfNotMatchTrue

If the text string matches the Meta TrueText, then the value is True. If it
does not match, then the value is False. That is, the text string is not
compared against the Meta FalseText.

The styles themselves are stored in the “Styles” Meta Property. This property
contains the names of all applied styles as a Standard Comma Text string.

5.2.1.3 Writing

Either the string specified by the FalseText or TrueText Meta property is written
to a file depending on the value of the boolean.

5.2.2 Integer

5.2.2.1 Format

The format of a string is as follows.

[ws][sign]digits[ws]

Items in square brackets ([and]) are optional; and the values of the other items
are as follows.

a) ws

An optional white space.

b) sign

An optional sign.

c) digits

A sequence of digits ranging from 0 to 9.

5.2.2.2 Styles

Styles either restrict or allow additional formatting on strings. The styles affect
the parsing of fields but not the generating of fields.

Integers can have the Numeric styles applied as described in “Numeric Styles”
(5.2.5). Note that not all numeric styles are applicable to Integers.

The styles themselves are stored in the “Styles” Meta Property. This property

Page 31 of 45

contains the names of all applied styles as a Standard Comma Text string.

5.2.3 Float

5.2.3.1 Format

When parsing floating point number strings, the basic format of a string is as
follows.

[ws][sign]integral-digits[.[fractional-digits]][e[sign]exponential-digits][ws]

Optional items are framed in square brackets ([and]). Items containing the
term "digits" consist of a series of numeric characters ranging from 0 to 9.

a) ws

A series of white space characters.

b) Sign

A negative sign or positive sign symbol.

c) integral-digits

A series of digits specifying the integral part of the number. Runs of integral-
digits can be partitioned by a group-separator symbol. (For example, in
some cultures a comma (,) separates groups of thousands.) Integral-digits
can be absent if there are fractional-digits.

d) '.'

A culture-specific decimal point symbol.

e) fractional-digits

A series of digits specifying the fractional part of the number.

f) 'e'

An uppercase or lowercase character 'e', indicating exponential (scientific)
notation.

g) exponential-digits

A series of digits specifying an exponent.

5.2.3.2 Styles

Styles either restrict or allow additional formatting on strings. The styles affect
the parsing of fields but not the generating of fields.

Floating point numbers can have the Numeric styles applied as described in
“Numeric Styles” (5.2.5). Note that not all numeric styles are applicable to
floating point numbers.

The styles themselves are stored in the “Styles” Meta Property. This property
contains the names of all applied styles as a Standard Comma Text string.

Page 32 of 45

5.2.3.3 Writing

5.2.4 Decimal

5.2.4.1 Format

When parsing decimal number strings, the basic format of a string is as follows.

[ws][sign]integral-digits[.[fractional-digits]][e[sign]exponential-digits][ws]

Optional items are framed in square brackets ([and]). Items containing the
term "digits" consist of a series of numeric characters ranging from 0 to 9.

a) ws

A series of white space characters.

b) Sign

A negative sign or positive sign symbol.

c) integral-digits

A series of digits specifying the integral part of the number. Runs of integral-
digits can be partitioned by a group-separator symbol. (For example, in
some cultures a comma (,) separates groups of thousands.) Integral-digits
can be absent if there are fractional-digits.

d) '.'

A culture-specific decimal point symbol.

e) fractional-digits

A series of digits specifying the fractional part of the number.

f) 'e'

An uppercase or lowercase character 'e', indicating exponential (scientific)
notation.

g) exponential-digits

A series of digits specifying an exponent.

5.2.4.2 Styles

Styles either restrict or allow additional formatting on strings. The styles affect
the parsing of fields but not the generating of fields.

Floating point numbers can have the Numeric styles applied as described in
“Numeric Styles” (5.2.5). Note that not all numeric styles are applicable to
decimal numbers.

The styles themselves are stored in the “Styles” Meta Property. This property
contains the names of all applied styles as a Standard Comma Text string.

5.2.4.3 Writing

5.2.5 Numeric Styles

Numeric Styles either restrict or allow additional formatting on strings. They are
used when strings containing integers or floating point numbers are parsed.

Page 33 of 45

There are 2 types of Numeric Styles: Basic and Composite.

1) A Basic Style specifies a particular restriction or enhancement to formatting.

2) A Composite Style specifies a set of Basic styles. Composite styles are
provided to conveniently specify combinations of styles frequently used.

5.2.5.1 Basic Styles

a) AllowCurrencySymbol

The string is parsed as a currency if it contains the currency symbol. The
selected culture determines which character is the currency symbol and
how currencies should be parsed.

b) AllowDecimalPoint

The string can contain a decimal point. The selected culture determines
which character is used as the decimal point.

c) AllowExponent

The string can be in exponential notation.

d) AllowHexSpecifier

The string contains a hexadecimal string. In addition to digits (0-9), strings
can also contain characters A-F and a-f.

e) AllowLeadingSign

The number in the string can have a leading sign. The selected culture
determines which character is used as the positive sign and the negative
sign.

f) AllowLeadingWhite

Any leading whitespace characters in the string are ignored when parsing.

g) AllowParentheses

The number in the string can be enclosed in one pair of parentheses.

h) AllowThousands

The number in the string can be separated into groups, for example a
character can be placed between every 3 digits to show thousands. The
selected culture determines how digits are grouped.

i) AllowTrailingSign

The number in the string can have a trailing sign. The selected culture
determines which character is used as the positive sign and the negative
sign.

j) AllowTrailingWhite

Any trailing whitespace characters in the string are ignored when parsing.

5.2.5.2 Composite Styles

a) Any

All styles are used except AllowHexSpecifier

Page 34 of 45

b) Currency

All styles are used except AllowHexSpecifier and AllowExponent

c) Float

AllowLeadingWhite, AllowTrailingWhite, AllowDecimalPoint and
AllowExponent styles are used.

d) HexNumber

AllowLeadingWhite, AllowTrailingWhite and AllowHexSpecifier styles are
used.

e) Integer

AllowLeadingWhite, AllowTrailingWhite and AllowLeadingSign styles are
used.

f) None

No styles are used.

g) Number

AllowLeadingWhite, AllowTrailingWhite, AllowLeadingSign,
AllowTrailingSign, AllowDecimalPoint and AllowThousands styles are used.

5.2.6 DateTime

5.2.6.1 Format

The format of the DateTime in a string is specified by the “Format” Meta
property. The “Format” property contains a string which specifies how a
DateTime is formatted as text. It is described in “DateTime Format string”
(5.2.7) below.

5.2.6.2 Styles

Read Styles provide some additional capabilities when parsing a text string.
These styles only apply to parsing and not when generating strings.

a) AllowInnerWhite

Extra whitespace characters in the text string are ignored when parsing –
unless the whitespace characters are specified in the format string.

5.2.7 DateTime Format string

DayOfMonth_NoLeading0, // d

DayOfMonth_Leading0, // dd

AbbreviatedNameOfDayOfWeek, // ddd

FullNameOfDayOfWeek, // dddd

10thOfSecond_Trailing0, // f

100thOfSecond_Trailing0, // ff

1000thOfSecond_Trailing0, // fff

10000thOfSecond_Trailing0, // ffff

Page 35 of 45

100000thOfSecond_Trailing0, // fffff

1000000thOfSecond_Trailing0, // ffffff

10000000thOfSecond_Trailing0, // fffffff

10thOfSecond_NoTrailing0, // F

100thOfSecond_NoTrailing0, // FF

1000thOfSecond_NoTrailing0, // FFF

10000thOfSecond_NoTrailing0, // FFFF

100000thOfSecond_NoTrailing0, // FFFFF

1000000thOfSecond_NoTrailing0, // FFFFFF

10000000thOfSecond_NoTrailing0, // FFFFFFF

Era, // g gg

Hour_12_NoLeading0, // h

Hour_12_Leading0, // hh

Hour_24_NoLeading0, // H

Hour_24_Leading0, // HH

TimeZoneInformation, // K

Minute_NoLeading0, // m

Minute_Leading0, // mm

Month_NoLeading0, // M

Month_Leading0, // MM

AbbreviatedNameOfMonth, // MMM

FullNameOfMonth, // MMMM

Second_NoLeading0, // s

Second_Leading0, // ss

OneCharAmPmDesignator, // t

AmPmDesignator, // tt

2DigitYear_NoLeading0, // y

2DigitYear_Leading0, // yy

3DigitYear_Leading0, // yyy

4DigitYear_Leading0, // yyyy

5DigitYear_Leading0, // yyyyy

HoursOffsetFromUtc_NoLeading0, // z

HoursOffsetFromUtc_Leading0, // zz

HoursMinutesOffsetFromUtc, // zzz

TimeSeparator, // :

Page 36 of 45

DateSeparator, // /

Literal, // / ' " other

5.3 Culture Parameters
The selected culture is used to set the following parameters used by Field
Formatting (5.2)

a) Currency symbol character

b) Number decimal separator character

c) Negative sign character

d) Positive sign character

e) Number group separator character

f) Number group size character

g) Full day of week names

h) Abbreviated day of week names

i) Full month names

j) Abbreviated month names

k) AM/PM designator

l) One character AM/PM designator

m) Date separator character

n) Time separator character

Currently there is no well established standard for the determination of the value
of these parameters for all the cultures identified by RFC 4646. The following
document can be used as a guide https://msdn.microsoft.com/en-
us/goglobal/bb896001.aspx to the parameter values for cultures.

5.3.1 Invariant Culture Parameter Values

The invariant culture is used when cultural conventions want to be avoided as
far as possible. Standard formatting of number and date/time values is always
performed within the context of this culture. The invariant culture uses the
following formatting parameter values:

a) Currency symbol character: “$”

b) Number decimal separator character: “.”

c) Negative sign character: “-”

d) Positive sign character: “+”

e) Number group separator character: “,”

f) Number group size: 3

g) Full and abbreviated day of week names:

◦ “Monday”, “Mon”

◦ “Tuesday”, “Tue”

Page 37 of 45

https://msdn.microsoft.com/en-us/goglobal/bb896001.aspx
https://msdn.microsoft.com/en-us/goglobal/bb896001.aspx

◦ “Wednesday”, “Wed”

◦ “Thursday”, “Thu”

◦ “Friday”, “Fri”

◦ “Saturday”, “Sat”

◦ “Sunday”, “Sun”

h) Full and abbreviated month names:

◦ “January”, “Jan”

◦ “February”, “Feb”

◦ “March”, “Mar”

◦ “April”, “Apr”

◦ “May”, “May”

◦ “June”, “Jun”

◦ “July”, “Jul”

◦ “August”, “Aug”

◦ “September”, “Sep”

◦ “October”, “Oct”

◦ “November”, “Nov”

◦ “December”, “Dec”

i) AM/PM and one character AM/PM designators:

◦ “AM”, “A”

◦ “PM”, “P”

j) Date separator character: “/”

k) Time separator character: “:”

It is recommended that the Invariant Culture be used when producing Fielded
Text files and cultural issues do not need to be taken into consideration. These
files are least likely to be affected by parsing errors due to incorrectly specified
cultures or culture ambiguities.

Page 38 of 45

6 Meta Reference

6.1 Root

6.2 FieldedText

6.3 Main/Root

6.4 General Attributes

6.5 Culture

6.6 CharEncoding

6.7 AutoDetectCharEncoding

6.8 EndOfLineType

6.9 EndOfLineChar

6.10 EndOfLineAutoWriteType

6.11 LastLineEndedType

6.12 QuoteChar

6.13 DelimiterChar

6.14 LineCommentChar

6.15 StuffedEmbeddedQuotes

6.16 SubstitutionEnabled

6.17 SubstitutionChar

6.18 AllowEndOfLineCharInQuotes

6.19 IgnoreBlankLines

6.20 IgnoreExtraChars

6.21 AllowIncompleteRecords

6.22 HeadingLineCount

6.23 MainHeadingLineIndex

Page 39 of 45

6.24 HeadingConstraint

6.25 HeadingQuotedType

6.26 HeadingAlwaysWriteOptionalQuote

6.27 HeadingWritePrefixSpace

6.28 HeadingPadAlignment

6.29 HeadingPadCharType

6.30 HeadingPadChar

6.31 HeadingTruncateType

6.32 HeadingTruncateChar

6.33 HeadingEndOfValueChar

6.34 NewBooleanFieldFalseText

6.35 NewBooleanFieldTrueText

6.36 NewIntegerFieldFormat

6.37 NewFloatFieldFormat

6.38 NewDateTimeFieldFormat

6.39 NewDecimalFieldFormat

6.40 NewBooleanFieldStyles

6.41 NewIntegerFieldStyles

6.42 NewFloatFieldStyles

6.43 NewDateTimeFieldStyles

6.44 NewDecimalFieldStyles

6.45 Elements

6.46 Field

6.47 Substitution

Page 40 of 45

6.48 Sequence

6.49 Field

6.50 Attributes

6.51 DataType

6.52 Index

6.53 Id

6.54 Name

6.55 FixedWidth

6.56 Width

6.57 HeadingConstraint

6.58 Constant

6.59 ValueQuotedType

6.60 ValueAlwaysWriteOptionalQuote

6.61 ValueWritePrefixSpace

6.62 ValuePadAlignment

6.63 ValuePadCharType

6.64 ValuePadChar

6.65 ValueTruncateType

6.66 ValueTruncateChar

6.67 ValueEndOfValueChar

6.68 ValueNullChar

6.69 HeadingQuotedType

6.70 HeadingAlwaysWriteOptionalQuote

6.71 HeadingWritePrefixSpace

Page 41 of 45

6.72 HeadingPadAlignment

6.73 HeadingPadCharType

6.74 HeadingPadChar

6.75 HeadingTruncateType

6.76 HeadingTruncateChar

6.77 HeadingEndOfValueChar

6.78 Headings

6.79 Null

6.80 Value

6.81 Format

6.82 Styles

6.83 FalseText

6.84 TrueText

6.85 Elements

6.86 Substitution

6.87 Attributes

6.88 Type

6.89 Token

6.90 Value

6.91 Elements

6.92 Sequence

6.93 Attributes

6.94 Name

6.95 Root

Page 42 of 45

6.96 FieldIndices

6.97 Elements

6.98 Item

6.99 SequenceItem

6.100 Attributes

6.101 Index

6.102 FieldIndex

6.103 Elements

6.104 Redirect

6.105 Redirects

6.106 Attributes

6.107 Index

6.108 Type

6.109 SequenceName

6.110 InvokationDelay

6.111 Elements

7 Other standards and conventions
Following are some recommendations on how other standards and conventions
can incorporate Fielded Text files

7.1 Mime Type
The Mime Type “text/fielded” be reserved for Fielded Text content

7.2 File Name Extensions
a) The extension “ftx” be used in names for files which contain Declared

Fielded Text content.

b) The extension “ftm” be used in names for files which contain Fielded Text
Meta data

Page 43 of 45

8 Acknowledgements
.NET 1.1

9 Appendices

9.1 Appreviations
EoL End Of Line

9.2 Fielded Text Versions

9.2.1 Version 1.0

Initial release

9.2.2 Version 1.1

The following changes were made in Version 1.1

a) Culture is ignored when testing for string equality

In version 1.0, it was specified that string equality tests should take into
account the linguistics from the specified culture. For example, if a German
Culture, was specified, then the character “ß” would be equivalent to the
string “ss”. However this capability would more likely causing confusion as
users would most likely either not be aware of what the linguistic rules are
in a culture. Even if they were, they probably would not expect them to
apply when comparing text files. Accordingly, in version 1.1 of FieldedText,
it was decided that equality would be determined by comparing strings on a
character by character basis and language linguistics would not be taken
into account.

b) Removed XML substitution types.

In version 1.0, 5 predefined substitution types were defined to assist with
text included in XML elements. These were:

◦ XmlCharLT

◦ XmlCharGT

◦ XmlCharAmp

◦ XmlCharApos

◦ XmlCharQuot

Providing support for encoding of characters in XML (or other text
envelopes) is not in the scope of this standard and accordingly these
predefined substitution types have been removed.

c) Added Character Standard Formatting. Meta character properties can also
be represented in a numeric character reference format.

Standard character formatting enables all characters to safely included in
Meta files. This includes characters which are not valid XML characters
and characters do not have good graphic representations in commonly
used fonts (typically called non-printable characters). These characters can

Page 44 of 45

now be included in Meta in numeric character reference format.

d) Added Null Type Sequence Redirect.

A Sequence Redirect can now also be invoked if a field value is null.

e) Replaced EndOfLineIsSeparator with LastLineEndedType.

The EndOfLineIsSeparator Meta property has been deprecated. It has
been replaced by the LastLineEndedType Meta property which better
describes the intent of this property.

f) Added AllowIncompleteRecords Meta Property

Allows lines which do not contain all fields expected by a record.

Page 45 of 45

	1 Document
	1.1 Information
	1.2 Change Information

	2 Introduction
	2.1 Definition
	2.2 Purpose
	2.3 Compatibility

	3 Files
	3.1 Files and Streams
	3.2 Fielded Text Meta Files
	3.3 Declared and Undeclared Fielded Text files
	3.4 Character Encoding
	3.5 Culture
	3.6 Whitespace
	3.7 Lines
	3.7.1 Start and End of a Line
	3.7.1.1 EndOfLineType and EndOfLineChar
	3.7.1.2 EndOfLineAutoWriteType
	3.7.1.3 LastLineEndedType
	3.7.1.4 EndOfLineIsSeparator

	3.7.2 Line Types

	4 Structure
	4.1 Overall
	4.2 Header Part
	4.3 Declaration Section
	4.3.1 Signature and Comment Character
	4.3.2 Declaration Parameters
	4.3.3 Version Declaration Parameter
	4.3.4 Meta Reference Declaration Parameters
	4.3.5 Custom Declaration Parameters

	4.4 Embedded Meta Section
	4.5 Comments Sections
	4.6 Heading Lines Section
	4.7 Body Part
	4.8 Record
	4.9 Order of fields in a Record
	4.10 Field
	4.10.1 Field Name
	4.10.2 Field Id
	4.10.3 Headings
	4.10.4 Heading Constraint
	4.10.5 Field Text, Value Text and Value
	4.10.5.1 Field Text
	4.10.5.2 Value Text
	4.10.5.3 Value

	4.10.6 Constant Fields
	4.10.7 Delimited Fields
	4.10.8 Fixed Width
	4.10.8.1 Padding Properties (value text shorter than field width)
	4.10.8.2 Truncate Properties (value text longer than field width)

	4.10.9 Field Data Types

	4.11 Heading Lines
	4.12 Substitutions
	4.12.1 Use of Substitutions
	4.12.2 Identifying Substitutions
	4.12.3 Substitution Elements
	4.12.4 Processing Substitutions

	4.13 Sequences
	4.13.1 Sequence Elements
	4.13.2 Sequence Item elements
	4.13.3 Sequence Redirect elements

	4.14 Calculating resolved order of elements

	5 Value Formats and Styles
	5.1 Standard Formatting
	5.1.1 Boolean
	5.1.2 Integer
	5.1.3 Float
	5.1.4 DateTime
	5.1.5 Characters
	5.1.6 String Quoting
	5.1.7 String CommaText
	5.1.8 Integer CommaText

	5.2 Field Formatting
	5.2.1 Boolean
	5.2.1.1 Format
	5.2.1.2 Styles
	5.2.1.3 Writing

	5.2.2 Integer
	5.2.2.1 Format
	5.2.2.2 Styles

	5.2.3 Float
	5.2.3.1 Format
	5.2.3.2 Styles
	5.2.3.3 Writing

	5.2.4 Decimal
	5.2.4.1 Format
	5.2.4.2 Styles
	5.2.4.3 Writing

	5.2.5 Numeric Styles
	5.2.5.1 Basic Styles
	5.2.5.2 Composite Styles

	5.2.6 DateTime
	5.2.6.1 Format
	5.2.6.2 Styles

	5.2.7 DateTime Format string

	5.3 Culture Parameters
	5.3.1 Invariant Culture Parameter Values

	6 Meta Reference
	6.1 Root
	6.2 FieldedText
	6.3 Main/Root
	6.4 General Attributes
	6.5 Culture
	6.6 CharEncoding
	6.7 AutoDetectCharEncoding
	6.8 EndOfLineType
	6.9 EndOfLineChar
	6.10 EndOfLineAutoWriteType
	6.11 LastLineEndedType
	6.12 QuoteChar
	6.13 DelimiterChar
	6.14 LineCommentChar
	6.15 StuffedEmbeddedQuotes
	6.16 SubstitutionEnabled
	6.17 SubstitutionChar
	6.18 AllowEndOfLineCharInQuotes
	6.19 IgnoreBlankLines
	6.20 IgnoreExtraChars
	6.21 AllowIncompleteRecords
	6.22 HeadingLineCount
	6.23 MainHeadingLineIndex
	6.24 HeadingConstraint
	6.25 HeadingQuotedType
	6.26 HeadingAlwaysWriteOptionalQuote
	6.27 HeadingWritePrefixSpace
	6.28 HeadingPadAlignment
	6.29 HeadingPadCharType
	6.30 HeadingPadChar
	6.31 HeadingTruncateType
	6.32 HeadingTruncateChar
	6.33 HeadingEndOfValueChar
	6.34 NewBooleanFieldFalseText
	6.35 NewBooleanFieldTrueText
	6.36 NewIntegerFieldFormat
	6.37 NewFloatFieldFormat
	6.38 NewDateTimeFieldFormat
	6.39 NewDecimalFieldFormat
	6.40 NewBooleanFieldStyles
	6.41 NewIntegerFieldStyles
	6.42 NewFloatFieldStyles
	6.43 NewDateTimeFieldStyles
	6.44 NewDecimalFieldStyles
	6.45 Elements
	6.46 Field
	6.47 Substitution
	6.48 Sequence
	6.49 Field
	6.50 Attributes
	6.51 DataType
	6.52 Index
	6.53 Id
	6.54 Name
	6.55 FixedWidth
	6.56 Width
	6.57 HeadingConstraint
	6.58 Constant
	6.59 ValueQuotedType
	6.60 ValueAlwaysWriteOptionalQuote
	6.61 ValueWritePrefixSpace
	6.62 ValuePadAlignment
	6.63 ValuePadCharType
	6.64 ValuePadChar
	6.65 ValueTruncateType
	6.66 ValueTruncateChar
	6.67 ValueEndOfValueChar
	6.68 ValueNullChar
	6.69 HeadingQuotedType
	6.70 HeadingAlwaysWriteOptionalQuote
	6.71 HeadingWritePrefixSpace
	6.72 HeadingPadAlignment
	6.73 HeadingPadCharType
	6.74 HeadingPadChar
	6.75 HeadingTruncateType
	6.76 HeadingTruncateChar
	6.77 HeadingEndOfValueChar
	6.78 Headings
	6.79 Null
	6.80 Value
	6.81 Format
	6.82 Styles
	6.83 FalseText
	6.84 TrueText
	6.85 Elements
	6.86 Substitution
	6.87 Attributes
	6.88 Type
	6.89 Token
	6.90 Value
	6.91 Elements
	6.92 Sequence
	6.93 Attributes
	6.94 Name
	6.95 Root
	6.96 FieldIndices
	6.97 Elements
	6.98 Item
	6.99 SequenceItem
	6.100 Attributes
	6.101 Index
	6.102 FieldIndex
	6.103 Elements
	6.104 Redirect
	6.105 Redirects
	6.106 Attributes
	6.107 Index
	6.108 Type
	6.109 SequenceName
	6.110 InvokationDelay
	6.111 Elements

	7 Other standards and conventions
	7.1 Mime Type
	7.2 File Name Extensions

	8 Acknowledgements
	9 Appendices
	9.1 Appreviations
	9.2 Fielded Text Versions
	9.2.1 Version 1.0
	9.2.2 Version 1.1

